High-efficiency, one-step starch utilization by transformed Saccharomyces cells which secrete both yeast glucoamylase and mouse alpha-amylase.

نویسندگان

  • K Kim
  • C S Park
  • J R Mattoon
چکیده

Transformed, hybrid Saccharomyces strains capable of simultaneous secretion of glucoamylase and alpha-amylase have been produced. These strains could carry out direct, one-step assimilation of starch, with conversion efficiency greater than 93% during a 5-day growth period. One of the transformants converted 92.8% of available starch into reducing sugars in only 2 days. Glucoamylase secretion by these strains resulted from expression of one or more chromosomal STA genes derived from Saccharomyces diastaticus. The strains were transformed by a plasmid (pMS12) containing mouse salivary alpha-amylase cDNA in an expression vector containing yeast alcohol dehydrogenase promoter and a segment of yeast 2 micron plasmid. The major starch hydrolysis product produced by crude amylases found in culture broths was glucose, indicating that alpha-amylase and glucoamylase acted cooperatively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning of a novel thermostable glucoamylase from thermophilic fungus Rhizomucor pusillus and high-level co-expression with α-amylase in Pichia pastoris

BACKGROUND Fungal amylase, mainly constitute of fungal α-amylase and glucoamylase, are utilized in a broad range of industries, such as starch hydrolysis, food and brewing. Although various amylases have been found in fungi, the amylases from Aspergillus dominate the commercial application. One of main problems exist with regard to these commercial use of amylases is relatively low thermal and ...

متن کامل

Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production

BACKGROUND Conventional corn dry-grind ethanol production process requires exogenous alpha and glucoamylases enzymes to breakdown starch into glucose, which is fermented to ethanol by yeast. This study evaluates the potential use of new genetically engineered corn and yeast, which can eliminate or minimize the use of these external enzymes, improve the economics and process efficiencies, and si...

متن کامل

Application in the Ethanol Fermentation of Immobilized Yeast Cells in Matrix of Alginate/Magnetic Nanoparticles, on Chitosan-Magnetite Microparticles and Cellulose-coated Magnetic Nanoparticles

Saccharomyces cerevisiae cells were entrapped in matrix of alginate and magnetic nanoparticles and covalently immobilized on magnetite-containing chitosan and cellulose-coated magnetic nanoparticles. Cellulose-coated magnetic nanoparticles with covalently immobilized thermostable α-amylase and chitosan particles with immobilized glucoamylase were also prepared. The immobilized cells and enzymes...

متن کامل

Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells.

Surface-engineered yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis alpha-amylase on the cell surface was used for direct production of ethanol from uncooked raw starch. By using 50 g/L cells during batch fermentation, ethanol concentration could reach 53 g/L in 7 days. During repeated batch fermentation, the production of ethanol could be maintai...

متن کامل

Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis.

Digestion of starch requires activities provided by 6 interactive small intestinal enzymes. Two of these are luminal endo-glucosidases named alpha-amylases. Four are exo-glucosidases bound to the luminal surface of enterocytes. These mucosal activities were identified as 4 different maltases. Two maltase activities were associated with sucrase-isomaltase. Two remaining maltases, lacking other i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 54 4  شماره 

صفحات  -

تاریخ انتشار 1988